Siliguri Institute of Technology
 Department of CSE
 Internal Exam I Year 2020 Design \& Analysis of Algorithm PCC- CS 404

Group-A:

1. Answer the following. [$5 \times 1=5$]
I) Which of the following method used in Marge Sort algorithm: a)backtracking b)Divide-and-conquer c)Greedy Method d)Dynamic programming
II) Time complexity of Quick Sort in worst case is
a) $O(n)$
b) $O(n \log n)$
c) $O\left(\mathrm{n}^{2}\right)$
d) $O(\log n)$
III) Time complexity of binary search algorithm:
a) $\mathrm{O}(\mathrm{n})$
b) $O(n \log n)$
c) $O\left(\mathrm{n}^{2}\right)$
d) $O(\log n)$
iv) 0 -Notation provides an asymptotic
a) upper bound
b) lower bound
c) tight bound
d) none of these
V) Time complexity of linear search algorithm in worst case is:
a) $\mathrm{O}(\mathrm{n})$
b) $O(n \log n)$
c) $O\left(n^{2}\right)$
d) $\mathrm{O}(\log \mathrm{n})$

Answer any two. [2 x 5=10]
2. Solve the following recurrence using Master Theorem.

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}\left(\frac{\mathrm{n}}{2}\right)+\mathrm{O}(\mathrm{n})
$$

3. What is the recurrence relation of Binary search and derive the time complexity of Binary search.
4. Derive the Time complexity of Merge sort algorithm.

Group-C

Answer any one. [1 x15=15]
5. a) Find the shortest path between vertex ' 0 ' to vertex ' 5 ' using Dijkstra's Algorithm for the following graph.

[8+7]
b) Create a Max Heap for the following key elements. $A=\{25,20,45,58,70,86\}$
6. a) Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is $\langle 10,20,50,1,100\rangle$.
b) Perform the partition operation once (one time) on the following array as per the requirement of the quicksort algorithm, assuming the last element is the pivot of the array. Clearly mention the steps. $A[]=\{7,8,2,1,6,5,4,3,9\}$

Siliguri Institute of Technology Department of CSE
 Internal Exam I Year 2020 Design \& Analysis of Algorithm PCC- CS 404

Full Marks: 30
Time: 60Mins

Group-A

1. Answer the following. [5 x $1=5$]
I) Which of the following method used in Marge Sort algorithm:
a)backtracking b)Divide-and-conquer c)Greedy Method d)Dynamic programmin
II) Time complexity of Quick Sort in worst case is
a) $\mathrm{O}(\mathrm{n}) \quad$ b) $\mathrm{O}(\mathrm{n} \log n) \quad$ c) $\mathrm{O}\left(n^{2}\right) \quad$ d) $\mathrm{O}(\log n)$
III) Time complexity of binary search algorithm:
a) $\mathrm{O}(\mathrm{n}) \quad$ b) $\mathrm{O}(\mathrm{n} \log \mathrm{n}) \quad$ c) $\mathrm{O}\left(\mathrm{n}^{2}\right) \quad$ d) $\mathrm{O}(\log n)$
IV) 0 -Notation provides an asymptotic
a)upper bound b)lower bound c)tight bound d)none of these
V) Time complexity of linear search algorithm in worst case is:
a) 0 (n)
b) $O(n \log n)$
c) $0\left(\mathrm{n}^{2}\right)$
d) $\mathrm{O}(\log \mathrm{n})$

Answer any two. [2 x 5=10]
2. Solve the following recurrence using Master Theorem.

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}\left(\frac{\mathrm{n}}{2}\right)+O(n)
$$

3. What is the recurrence relation of Binary search and derive the time complexity of Binary search.
4. Derive the Time complexity of Merge sort algorithm.

Group-C

Answer any one. [1 x15=15]
5. a) Find the shortest path between vertex ' 0 ' to vertex ' 5 ' using Dijkstra's Algorithm for the following graph.

b) Create a Max Heap for the following key elements. $A=\{25,20,45,58,70,86\}$
6. a) Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is $\langle 10,20,50,1,100\rangle$.
b) Perform the partition operation once (one time) on the following array as per the requirement of the quicksort algorithm, assuming the last element is the pivot of the array. Clearly mention the steps. $A[]=\{7,8,2,1,6,5,4,3,9\}$

